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Deep learning has shown superiority to extract more representative features from multimedia data in
recent years. Recently, the most typical graph convolutional networks (GCN) has achieved excellent per-
formance in the semi-supervised framework-based data representation learning tasks. GCN successfully
generalizes traditional convolutional neural networks to encode arbitrary graphs by exploiting the graph
Laplacian-based sample structure information. However, GCN only fuses the static structure information.
It is difficult to guarantee that its structure information is optimal during the training process and appli-
cable for all practical applications. To tackle the above problem, in this paper, we propose a manifold reg-
ularized dynamic graph convolutional network (MRDGCN). The proposed MRDGCN automatically
updates the structure information by manifold regularization until model fitting. In particular, we build
an optimization convolution layer formulation to acquire the optimal structure information. Thus,
MRDGCN can automatically learn high-level sample features to improve the performance of data repre-
sentation learning. To demonstrate the effectiveness of our proposed model, we apply MRDGCN on the
semi-supervised classification tasks. The extensive experiment results on human activity datasets and
citation network datasets validate the performance of MRDGCN compared with GCN and other semi-
supervised learning methods.

� 2020 Elsevier B.V. All rights reserved.
1. Introduction

With the advancement of science and technology, and the pop-
ularity of smart terminals such as smartphones and notebook com-
puters, large scale multimedia data (e.g. document, picture, audio
and video) are generated and uploaded to the Internet every day.
Image is one of the largest, fastest growth speed and most informa-
tive multimedia data carriers in the current society. Therefore,
images classification and recognition, such as human activity
recognition (HAR) [1–3], face recognition [4–6], pedestrian detec-
tion [7–9] and object detection [10–12], have become an important
part of computer vision, pattern recognition and machine learning
in recent years, which can effectively analyze the content of digital
images and give correct judgments. With the development of vir-
tual reality and augmented reality, HAR has attracted much atten-
tion in many areas including video surveillance and accident
warning. However, traditional conventional shallow learning algo-
rithms including support vector machine [13], kernel least squares
[14] and logistic regression [15] cannot extract more representa-
tive sample features and meet development needs, which directly
affect the results of the image classification tasks.

To acquire high-level sample features from massive images,
deep learning (DL) was introduced and has been demonstrated to
be an effective method. In practical life, a small amount of labeled
samples are readily available, whereas massive labeled samples
cannot be directly obtained because it require a lot of manpower,
material resources and financial resources. The most successful
method is semi-supervised learning with manifold regularization
(MRSSL), which uses the manifold structure information of unla-
beled and labeled samples distribution by regarding it as a regular-
ization term of the objective function. That is to say, any two
samples with the closer space distance generally belong to the
same category. Liu et al. [16] presented a kernel logistic regression
with Laplacian regularization for web image annotation by
employing the graph Laplacian to preserve the local geometry of
the potential manifold. Tao et al. [17] proposed a Hessian regular-
ized support vector machines model to improve the performance
tworks,
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of image annotation due to the richer null space of Hessian. Liu
et al. [18] combined p-Laplacian with support vector machines
and kernel least squares by utilizing p-Laplacian to express high-
order manifold distribution. Ma et al. [19] utilized hypergraph p-
Laplacian to capture the complex relationships among the different
samples.

MRSSL methods are only effective for regular Euclidean data.
There exists vast amounts of non-Euclidean data or graph data of
arbitrary structures. In recent years, spectral convolution methods
have received an increasing attention and achieved better perfor-
mance including text classification [20–22] and image recognition
[23–25]. Each node of graphs gathers its neighbors information by
the convolution operation of the Fourier domain, in other words,
this methods do not directly make the convolution on the graphs.
Kipf and Welling [26] presented a graph convolutional networks to
learn the sample features by fusing the direct neighbors relation-
ships of each node. Fu et al. [27] considered the direct and indirect
neighbors relationships to learn richer sample features, which
improved the performance of semi-supervised classification.
Yadati et al. [28] proposed a hypergraph-based GCN for document
classification by using hypergraph to describe the multicultural
relationships among samples.

However, the above methods depend on the static samples dis-
tribution, which limit the range of its application. Confronting this
challenging problem, it is important to design a dynamic graph
structure learning model, which aims to automatically optimize
the local geometry of samples. In this paper, we propose a dynamic
graph convolutional network based on manifold regularization
(MRDGCN) for semi-supervised classification. We introduce a man-
ifold regularization term to the objective function, which can drive
the objective function to change over the potential sample distri-
bution manifold. When the objective function value cannot meet
a specific threshold, MRGCN separately updates or optimizes its
manifold structure information (except the first convolution layer)
and network weight matrix until model fitting. After many times
training iteration, our proposed MRGCN can acquire optimal struc-
ture information. In addition, we make an optimization and deriva-
tion for the convolution layer formulation of GCN, and then
propose a general graph structure learning framework. Finally,
MRDGCN can extract more high-level sample features by fusing
its dynamic structure information to improve the performance of
the semi-supervised classification. To verify the performance of
our proposed MRDGCN model, we have tested on CAS-YNU-
MHAD, unstructured social activity attribute (USAA), toy human
activity dataset (2moons dataset) for human activity recognition
and Citeseer, Cora datasets for citation networks classification.
The experiments results prove that the proposed MRDGCN algo-
rithm shows better classification performance compared to GCN
and other semi-supervised learning models.

The remainder of this paper is arranged as follows: Section 2
briefly summarizes the related works of spectral approaches on
graph domain. Section 3 details describes our proposed MRDGCN
framework. Large-scale experimental results and some discussions
are presented in Section 4 and Section 5. At the end of this paper,
we give the conclusion.

2. Spectral approaches on graph domain

The initial spectral graph convolution [23] is expressed as the
multiplication of signal X and filter g. It can be denoted as the fol-
lowing form:

gh Lð ÞHX ¼ U UTgh Lð Þ
� �

� UTX
� �� �

¼ Ugh Kð ÞUTX ð1Þ

Here, U and K denotes the eigenvector matrix and the diagonal
matrix with non-negative eigenvalues in the normalized graph
2

Laplacian L, respectively. UTX represent the frequency domain sig-
nals in the Fourier domain. That is to say, spectral graph convolu-
tion converts the convolution of the time domain to the point
multiplication of the frequency domain.

However, this method is not suitable for large graphs and has a
very high computation cost. To over this problem, Defferrard et al.
[20] utilized the Chebyshev polynomials about the normalized
graph Laplacian to approximate the filter g, and then proposed a
spectral convolution with K-order polynomials on graphs, i.e.

gh Lð ÞHX ¼
Xk

k¼0

hkTk L
�� �

X ð2Þ

In this method, L
�
is rescaled according to 2

kmax
L� IN . kmax represents

the maximum eigenvalue of the normalized graph Laplacian L; L is

equal to IN � D�1
2AD�1

2;Dii ¼
P

jAij. A denotes the similarity matrix
among different samples. The Chebyshev polynomials is recursively
expressed according to T0 Xð Þ ¼ 1; T1 Xð Þ ¼ X and
Tk Xð Þ ¼ 2XTk�1 Xð Þ � Tk�2 Xð Þ.

To further build a linear and deep model, Kipf and Welling lim-
ited the order of the Chebyshev polynomials (K ¼ 1), in other
words, it only considered the direct relationships between any
two samples. Finally, it acquired a linear convolution layer formu-

lation, i.e. H Lþ1ð Þ ¼ r B
�
H Lð ÞW Lð Þ

� �
. B
�
is equal to D

��1
2 Aþ INð ÞD

��1
2. W Lð Þ

is weight parameter matrix to be learned in the training iteration
process. The detailed evolution process can be found in [26]. Dur-
ing the training process of GCN, it increased the number of training
iteration according to value of cross entropy loss objective function
and will stop until model fitting.

3. Manifold regularized dynamic graph convolutional networks

MRDGCN can learn more effective sample features by continu-
ously updating manifold distribution information of samples apart
from the first convolution layer during the convolution process,
which yields better classification performance than GCN model.
We first introduce the traditional manifold regularized framework
to original objective function of GCN, and then propose a dynamic
graph structure learning (DGSL) method. Following, we give the
optimization scheme of DGSL on each training iteration. To solve
the application limitation of GCN on different datasets, in the last,
we present the derivation and optimization scheme of each convo-
lution layer formulation for DGSL. And then we analyze the imple-
ment process of a two-layer MRDGCN. Fig. 1 shows the general
framework of our proposed MRDGCN.

3.1. Dynamic graph structure learning

GCN relied on a static sample manifold distribution information

B
�
that is computed according to the input data. That is to say, this

method only optimized weight matrix W Lð Þ of each convolution
layer. In real life, the local geometry distribution between data
always in changing, thus GCN cannot get the most effective sample
features. To tackle this issue, we apply traditional manifold regu-
larization framework to the cross entropy loss function of GCN,
and then propose a DGSL model to encode the complex data struc-
ture. In other words, we update the structure relationships (apart
from the first convolution layer) and weight parameters simultane-
ously by adding an additional manifold regularization term to the
cross entropy loss function. Therefore, our proposed DGSL can be
denoted as the following optimization issue, i.e.

C W;Að Þ ¼ C1 W;Að Þ þ bC2 W;Að Þ ¼ �y logY þ btr YTMY
� �

ð3Þ



Fig. 1. The framework of the manifold regularized dynamic graph convolutional networks.
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In DGSL, C1 W;Að Þ denotes the cross entropy loss. tr YTMY
� �

repre-

sents the manifold regularization term. M denotes that how to
use more effective method including graph Laplacian, Hessian and
p-Laplacian, to better preserve the local geometric distribution of
samples. In this paper, we use universally used graph Laplacian
matrix. y is the label information matrix of the input sample. Y
denotes the probability distribution matrix of samples, i.e. we can
get Y by taking the extracted sample features H Lþ1ð Þ of the last con-
volution layer as the input of the Softmax function. Thus, the above
objective function can be written as:

C W ;Að Þ ¼ �y logY þ btr YTLY
� �

ð4Þ

We can regard the objective function of DGSL as a dual optimization
issue, i.e. we need to update or optimize two variableW and A. b is a
balance parameter of the objective function.

3.2. Optimization scheme

In this paper, we use the alternative optimization strategy to
update adjacency matrix and weight matrix, i.e. when we update
a specific variable, we fix others variable until the objective func-
tion of DGSL meet a specific threshold or remain unchanged for
many times. We first fix the adjacency matrix A and optimize
weight matrix W, thus the above objective function can be simpli-
fied as the following form:

C Wð Þ ¼ �y logY þ btr YTLY
� �

ð5Þ

where the initial A of each convolution layer is calculated according
the input samples by k-NearestNeighbor with the Euclidean dis-
tance. In this paper, this problem can be solved by the gradient des-
cent method [29].

Following, we fix weight matrixW, the above objective function
on updating adjacency matrix A (except for the first convolution
layer) can be denoted as

C Að Þ ¼ �y logY þ btr YTLY
� �

ð6Þ
3

The A can be updated according to output sample features of final
convolution layer of the last training iteration. With the update of
adjacency matrix A, we also further make an optimization for the
weight matrix W. Our proposed DGSL will repeat this process until
the objective function value do not come down for many epochs.

3.3. A two-layer MRDGCN

To increase the scale adaptability of model, GCN let kmax ¼ 2.
With the diversification of adjacency matrix A computing methods
and the differences between different datasets, kmax ¼ 2 has the
limitation. To solve this problem, we make an optimization for
the one-order spectral graph convolution again, and then the spec-
tral convolution with one-order polynomial can be simplified as
the following form:

gh Lð ÞHX ¼
Xk¼1

k¼0

hkTk L
�� �

X ¼ h0X þ h1
2

kmax
L� IN

� �
X ð7Þ

where h0 and h1 denote the filter parameters, i.e. weight matrixW Lð Þ

of each convolution layer. To further avoid the overfitting issue of
the above formula, we can get the following expression by using a
single parameter h, i.e.

gh Lð ÞHX ¼ h0 � h1 þ 2
kmax

h1 IN � D�1
2AD�1

2

� �� �
X

¼ h2 þ 2
kmax

h1 IN � D�1
2AD�1

2

� �� �
X

¼ 2
kmax

kmax

2
h2 þ h1

� �
� 2
kmax

h1D
�1

2AD�1
2

� �
X

¼ 2
kmax

h3 � h1D
�1

2AD�1
2

� �
X ¼ h

2
kmax

IN þ D�1
2AD�1

2

� �
X ð8Þ

where, h0 � h1 ¼ h2;
kmax
2 h2 þ h1 ¼ h3 and h3 ¼ �h1 ¼ h. To further

avoid vanishing gradients and instabilities by stacking the above
form to build a deep network model, we also introduce the renor-
malization trick that is suggested in [26]. And then we get an opti-
mization convolution layer formulation for a signal X 2 Rn�m with n
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samples and m dimensional sample features, which is named the
manifold regularized dynamic graph convolutional networks
(MRDGCN), i.e.

gh Lð ÞHX ¼ 2
kmax

D
��1

2 A
�
D
��1

2Xh ¼ 2
kmax

B Lð ÞH Lð ÞW Lð Þ ð9Þ

where h 2 Rm�z or W Lð Þ is filter parameter of each network layer.

A
�
¼ Aþ IN and B Lð Þ ¼ D

��1
2 A
�
D
��1

2.
The dynamic spectral convolution can be interpreted as the fol-

lowing process: (1) During the first iteration training process,
when the loss values of the objective function Eq. (4) meet a speci-
fic threshold, MRDGCN will stop training. Otherwise, MRDGCN will
constantly optimize the adjacency matrix and weight matrix of
each layer by the alternative optimization strategy, and then will
implement the second iteration training. (2) MRDGCN will repeat
the above process until the objective function Eq. (4) meets a speci-
fic threshold. (3) Finally, MRDGCN can acquire the optimal adja-
cency matrix and weight matrix. After multi-layer spectral
convolutions, it can learn richer data information to improve the
classification performance.

Algorithm 1: A two-layer manifold regularized dynamic
graph convolutional networks

Input: Datasets X
Parameter: b, training iteration epoch k, learning rate etc.
Output: Recognition accuracy

1: H 1ð Þ ¼ RELU 2
kmax

B 0ð ÞXW 0ð Þ
� �

.

2: H 2ð Þ ¼ 2
kmax

B 1ð ÞH 1ð ÞW 1ð Þ.

3: for j ¼ 0 ! k� 1
4: Fix A, optimize W by Eq. (5).
5: Fix W, update A by Eq. (6)
6: end for

7: Get the optimal A;W and H 2ð Þ.
8: Give the recognition accuracy.

In this paper, we use a two-layer MRDGCN for semi-supervised
classification to demonstrate the effectiveness of our proposed
method. And then, we can get the following formulation by stack-
ing two-layer Eq. (9), i.e.

H 2ð Þ ¼ 2
kmax

B 1ð ÞRELU
2

kmax
B 0ð ÞXW 0ð Þ

� �
W 1ð Þ ð10Þ

where X denotes the initial sample features. After two-layer convo-
lution operation, MRDGCN can efficiently learn the sample features
with n samples and Q dimensional (The number of Q is equal to
classes). Following, we can get the probability distribution matrix
Y, and then can get the optimal structure information of the second
layer and weight matrix by our proposed optimization scheme after
many training iteration. Finally, MRDGCN can extract more repre-
sentative sample features by fusing the optimal structure informa-
tion and give the recognition accuracy by Sofmax classifier.
Algorithm1 summarize a two-layer manifold regularized dynamic
graph convolutional networks.

4. Experiments

To demonstrate the effectiveness of our proposed algorithm, in
this section, we conduct substantial experiments to test the pro-
posed MRDGCN, MRDGCN-1 and other semi-supervised learning
methods, such as the representative GCN [26], graph attention net-
works (GAT) [30], Hypergraph p-Laplacian graph convolutional
networks (HpLapGCN) [31], Chebyshev (K ¼ 2) [20], Chebyshev
4

(K ¼ 3) [20], HyperGCN [28], manifold regularization (ManiReg)
[32], semi-supervised embedding (SemiEmb) [33], multi-layer per-
ceptron (MLP) [26], skip-gram based graph embeddings (Deep-
Walk) [34], on several human activity datasets and citation
network datasets. The baseline MRDGCN-1 denotes the combina-
tion of optimized GCN variation Eq. (9) and cross entropy loss func-
tion [26], which still use a static sample structure information.
MRDGCN is constructed by the optimized convolution layer formu-
lation Eq. (9) and our proposed objective function Eq. (4). Follow-
ing, we detailed present the used datasets, experiment
parameters setting and comparison results, respectively.

4.1. Experiment datasets

CAS-YNU-MHAD dataset [2], a multimodal human activity data-
base, was created by the Chinese Academy of Sciences and Yunnan
University. It was collected by utilizing a Microsoft Kinect camera
and 17 inertial sensors, which were placed in spine, left shoulder,
right shoulder, left arm, right arm, left forearm, right forearm, left
hand, right hand, spine, hips, right up leg, left up leg, left leg, right
leg, left foot and right foot. It is composed of 1086 human actions
with 10 different classes, such as typing, lying down, walking S,
walking quickly, walking, sitting up, sitting down, running, jump-
ing up and jumping forward. Each category was collected from
10 people between 20 and 30 years old. The original depth human
action image is resized to 512� 424 pixels with 16-bit. We also
use the same feature extraction method that is suggested in [2]
to acquire the STCP features [35] of each depth human action
image, i.e. we can get a feature matrix with 1086 samples and
81648 dimensional features.

Unstructured social activity attribute (USAA) dataset [1,36] is
composed of totally 1600 videos collected from the Columbia Con-
sumer Video (CCV) [37] database. USAA consists of eight semantic
category videos collected from birthday party, music performance,
non-music performance, parade, wedding dance, wedding cere-
mony, graduation party and wedding reception. USAA provides
the static SIFT features and spatial–temporal interest points (STIP)
features. In our experiments, we use the video features that con-
catenate SIFT and STIP to learn more effective sample features
via MRDGCN, i.e. each video has 10000 dimensional features.

The 2moons database is a virtual human action database con-
structed by humans, which contains 200 images. All images are
selected into 2 categories, which is distinguished by label þ1
(moon images) or labeled �1 (non-moon images).

Citeseer dataset [38] consists of 3327 machine learning publica-
tions with 3703 dimensional features, which is collected from six
classes including Agents, AI, IR, HCI, DB and ML.

Cora dataset [39] is composed of 2708 publications with 1433
dimensional features, which are totally seven categories, such
as reinforcement-learning, case-based, probabilistic-methods,
neural-networks, theory, genetic-algorithms and rule learning.

4.2. Experiment parameters

In our semi-supervised classification experiments, for CAS-
YNU-MHAD dataset, 200 samples are randomly selected as test
set, 200 samples are randomly choose as validation set, and the
remaining part for training set. For USAA database, we use 300
samples for validation set, 300 samples for testing and the rest
videos for training. To demonstrate the classification performance
of our proposed method under few labeled training data, in its
training set (CAS-YNU-MHAD and USAA), we randomly chose
10%, 20%, 30%, 40% and 50% samples as labeled data and the rest
samples for unlabeled data. Because the 2moons dataset is quite
small, we randomly select 50 samples as validation samples, 50
samples for test samples and the rest as training samples. In addi-
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tion, we randomly assign a specific label rate including 5%, 10%,
15%, 20% and 25% as labeled samples and the rest part as unla-
beled samples on the 2moons database. For Citeseer and Cora data-
set, we choose 1000 samples as test samples, 500 samples as
validation samples and the rest as training samples.

To minimize the loss value of our proposed objective function,
the Adam optimizer [40] with an initialized learning rate of 0:01
and 0:001 (USAA) is used to train a two-layer MRDGCN. The max-
imum training iteration up to 200 epochs and MRDGCN will early
stopping training if the loss value of objective function do not des-
cend for 10 times continuously on its validation set. We use the
weights initialization method that is suggested in [41] during the
training process. The L2 regularization with a regularization
parameter of 5� 10�4;5� 10�5 (USAA) and the dropout [42] with
a dropout rate of 0:5 is used to solve the overfitting problem of
MRDGCN. The balance parameter b of objective function is 0:001
and 1 (USAA). In addition, on the CAS-YNU-MHAD, USAA, 2moons
datasets and citation network datasets, the output feature dimen-
sion of the first convolution layer is 128;32;16 and 16,
respectively.
4.3. Citation networks classification – toy experiment

In the GCN and most of existing GCN variant models, the
commonly-used datasets are citation networks datasets. Thus, we
also make a comparison on the Citeseer and Cora datasets for our
proposed MRDGCN. We use 120 and 140 labeled samples on the
Table 1
Comparison of the different algorithms on citation network datasets.

Method Citeseer (120) Cora (140)

ManiReg 60.1 59.5
SemiEmb 59.6 59
DeepWalk 43.2 67.2

Chebyshev (K ¼ 2) 53.6 49.8
Chebyshev (K ¼ 3) 53.7 50.5

GCN 52.8 57.2
MLP 46.5 55.1

MRDGCN 66.6 64.8

Fig. 2. Recognition rates of all categories on the 2moons database.

5

Citeseer and Cora training samples respectively and give the mean
recognition rate with 100 random runs. As shown in Table 1, we
can find that our proposed MRDGCN model performs better than
the state-of-the-art methods, which also indicates that MRDGCN
can better preserve and utilize the structure relationships of the
samples via manifold regularization method. It also reveals that
MRDGCN can learn more representative sample features by
dynamically updating the manifold distribution of the samples
during the training process.

4.4. Human activity recognition

Figs. 2–4 show the histogram of the recognition rates for all
classes on the 2moons, CAS-YNU-MHAD and USAA datasets
respectively. Reported numbers denote the mean recognition accu-
racy with five run experiments in percent. The y-axis denotes the
mean recognition accuracy over all categories for GCN, MRDGCN-
1 and MRDGCN model. The x-axis denotes the number of labeled
Fig. 3. Recognition rates of all categories on the CAS-YNU-MHAD database.

Fig. 4. Recognition rates of all categories on the USAA database.



Fig. 5. Recognition rate of label þ1 on the 2moons database.
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samples randomly chose from training samples. From Figs. 2–4, we
can find that the proposed MRDGCN achieves a higher recognition
rate than other models, especially only a few labeled samples. In
addition, it also reveals the effectiveness of optimization method
for each convolution layer formulation.

Fig. 5 reveals the mean recognition rate of the 2moons database
about the label þ1 (moon images). Fig. 6 shows the mean recogni-
tion rate of the CAS-YNU-MHAD database over some human
actions, such as jumping forward, jumping up, walking quickly
and lying down. Fig. 7 shows the average classification accuracy
Fig. 6. Recognition rate of each category on the CAS-YNU-MHAD database, including
corresponds on single class.

6

of the USAA database over some human actions, such as graduation
party, non-music performance, parade and wedding dance. The y-
axis is the mean recognition rate of each class on different datasets.
Each subfigure corresponds one human action. From the results of
the human activity datasets, we can see that MRDGCN also gets the
best classification performance.

To further demonstrate the effectiveness of dynamic graph
structure learning method and the optimization of convolution
layer formulation, we compare many state-of-the-art semi-
supervised learning algorithms. In addition, we report the mean
classification performance under the CAS-YNU-MHAD and 2moons
datasets with the 30% and 5% labeled samples respectively. From
Figs. 2–7 and Table 2, we can find that our proposed MRDGCN
shows the best classification performance. Due to the generaliza-
tion of the proposed convolution rule Eq. (9) on different datasets,
MRDGCN-1 can acquire the optimal static data structure informa-
tion and effective sample features compared with GCN. Compared
with MRDGCN-1 and other semi-supervised learning methods,
MRDGCN can get the optimal dynamic space structure information
of each layer by the effective combination of our proposed convo-
lution rule Eq. (9) and objective function with manifold regulariza-
tion term Eq. (4). Finally, MRDGCN can extract more reasonable
and effective data features via the convolution fusion of the
acquired data structure relationships and input data features.
These data indicates that MRDGCN can better preserve and utilize
the local manifold structure of data during the training process of
model.
4.5. Parameters sensitivity analysis

In our proposed MRDGCN, there exists one parameter b to bal-
ance the cross entropy loss value and manifold regularization term
jumping forward, jumping up, walking quickly and lying down. Each subfigure



Fig. 7. Recognition rate of each category on the USAA database, including graduation party, non-music performance, parade and wedding dance. Each subfigure corresponds
on single class.

Table 2
Comparison of the different algorithms on human activity datasets.

Method 2moons (5%) CAS-YNU-MHAD (30%)

Chebyshev (K ¼ 2) 78.8 47.9
Chebyshev (K ¼ 3) 79.2 55

GCN 79.6 38.5
GAT 80 48.8

HyperGCN 80.4 47
HpLapGCN 80.8 49
MRDGCN 81.6 60.5

Fig. 8. Parameter sensitivity analysis on the CAS-YNU-MHAD and 2moons.

W. Liu, S. Fu, Y. Zhou et al. Neurocomputing xxx (xxxx) xxx
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in the objective function. Thus, we conduct extensive experiments
to analyze the sensitivity of the parameter b. We run MRDGCN
with different b values (from 0.0001 to 0.05) and give its mean
average recognition accuracy under 30% and 10% labeled samples
of the CAS-YNU-MHAD and 2moons. As shown in Fig. 8, we can see
that when b varies from 0.001 to 0.05, the proposed method has a
stable classification performance. It indicates that MRDGCN is less
sensitive to the selection of parameter b.
5. Discussions

In the future works, we will explore the graph manifold regular-
ization method to maintain the local invariance constraint
between data, and then propose the manifold regularization based
graph convolutional networks (MRGCN) model. By the combina-
tion of our proposed objective function variant Eq. (11) and the
effective convolution layer rule of GCN [26], MRDGCN can better
utilize the adjacency relationships between data compared with
GCN [26]. Thus, under utilizing the static structure relationships
between samples, how to choose appropriate objective function
to acquire the effective parameters is vital. In other words, MRGCN
still cannot optimize the structure relationships between samples.

C Wð Þ ¼ C1 Wð Þ þ bC2 Wð Þ ¼ �y logY þ btr YTMY
� �

ð11Þ
6. Conclusion

In recent years, deep learning-based graph structure learning
models, especially graph convolutional networks (GCN), have cap-
tured widespread attention of researchers in data representation
learning area with complex structure. Nevertheless, existing GCN
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and its variants only utilized a static manifold distribution infor-
mation of samples by spectral convolution operation and give little
attention to its optimization problem. Thus, how to preserve and
optimize the manifold structure of data still is a challenging prob-
lem. In this paper, we present a dynamic GCNmodel (MRDGCN) for
human activity recognition and citation networks classification by
combining the traditional manifold regularization framework. Dur-
ing the training process, we employ the alternative solution
method to learn the optimal filter parameter and structure infor-
mation, leading to a dynamic graph structure learning model. In
addition, we further make a generalization for the layer-wise prop-
agation rule of GCN, and then MRDGCN can extract richer sample
features. Substantial experiment results on human activity data-
sets including CAS-YNU-MHAD, 2moons, USAA and citation net-
works datasets demonstrate that MRDGCN model outperforms
the typical GCN.
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